

LeaPP, a CPT Project: *Pathway Towards Food-Grade Recycled Polypropylene*

January 29, 2026

ÉCOEMBALLAGE+

Proud partner of LeaPP project's Phase I

A program coordinated by the FAQDD and financially supported by the Quebec government.

Québec

LEADING ORGANIZATIONS

OUR MISSION

Foster a better alignment between market needs and recycling outputs through optimization solutions and research projects to create a circular economy for post-consumer plastics in Canada.

OUR VISION

That all plastic packaging put on the market in Canada be collected and recycled in keeping with market needs (volumes, grades, quality), to create a circular economy.

Phase I

Foundational research

February 2020 - April 2021

Phase II

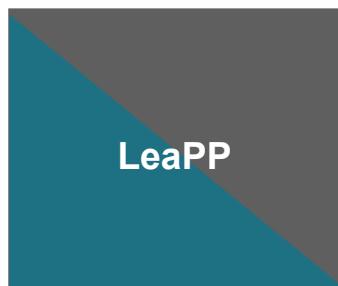
Projects: pilots + research

Winter 2022 - Today

Environment and
Climate Change Canada
Environnement et
Changement climatique Canada

With the financial support of

Québec


Full Project Portfolio

Implement industrial-scale solutions to quickly & concretely improve the quality of sorted materials, as well as the recycling rate of plastic packaging.

Completed

Ongoing

- Food-Grade
- Formats
- PP

- Flexible Plastics
- PET Thermoforms

Ongoing Projects

Small Items Recovery

Analyze the composition of the small items stream found in MRFs and identify / trial strategies to optimize sorting performance in varied sorting facility settings.

- Food Grade
- Formats
- PP
- Flexible Plastics

BiblioFlex

Better understand the composition of flexible plastic packaging (FPP) and guide design and recycling processes by building a database of packaging types classified by product category.

LeaPP

Support the production of higher volumes of food-grade recycled PP using curbside-collected feedstock.

Advancing Food-Grade Recycled Plastics in Canada

Challenges and Regulatory Perspectives

Regulatory Landscape

Highlights:

1. Source separation AND decontamination capacities are required for all resins
2. Compliance mechanisms are stricter in Europe
3. Both Health Canada and the FDA issue letters –i.e., Letter of No Objection (LONO) / No Objection Letter (NOL) respectively, but producers may want to rely on other guarantees from suppliers

	CAN	US	EUR
Access to list of approved processes	Not public	Public	Public
Pre-market clearance	Voluntary	Voluntary	Mandatory
Responsible entity	Manufacturer	Manufacturer	Manufacturer
Nature of the approval	Not legal	Not legal	Legal

Recycling Systems Maturity

	MOST MATURE			LEAST MATURE	
	PET RECYCLING	HDPE RECYCLING	PP RECYCLING	LDPE RECYCLING	PS RECYCLING
Access to Significant Quantity of Verifiable Food-Grade Source Material	✓	✓	✗	✗	✗
Well-Established Ability to Decontaminate	✓	✓	✓	✓	✗

Highlights:

1. For PP and LDPE, while technologies exist, source control is more complex due to products diversity
2. For PS, technologies exist as well, but are less developed or less implemented at commercial scale

As the demand for PCR resin use in food packaging applications increases, Canada needs a streamlined, well-functioning compliance process to ensure that its use is safe

Key Findings

- 1 Although Canadian qualification and compliance processes are aligned with U.S. mechanisms, they lack clarity compared to best practices implemented in other jurisdictions.
- 2 There are no standard Canadian protocols to guide PCR resin qualification as food-grade, which creates inefficiencies and complicates the process for applicants.
- 3 Technologies exist to manufacture food-grade LDPE, PP, and PS but the food-grade qualification process is challenging due to insufficient suitable feedstock, complex traceability requirements and economic considerations.
- 4 PET and HDPE recycling systems are more mature. Meeting the requirements leading to the issuance of a LONO/NOL is easier.
- 5 To increase the volume of food-grade PCR resin produced, the industry needs to develop its capacity to leverage new feedstock, including materials coming from curbside collection.

LeaPP Project Overview

Objective

Define acceptable pathways to enable the production of high-quality food-grade recycled polypropylene (rPP) using curbside-collected feedstock

Implementation steps

- Phase 1: Determine key technical characteristics (attributes) to consider for recycling PP products into food packaging applications
- Phase 2:
 - Identify and test sorting and recycling solutions that could help meet technical and safety specifications
 - Document processes and present to food safety authorities

Timeline

- Phase 1: near completion
- Phase 2: Q4-2026

Project partners

About Green Group

Our Mission:

Green Group Consulting empowers organizations to achieve bold sustainability goals. Through tailored solutions and proven expertise in recycling and compliance, we help clients unlock value, reduce risk and rescue materials to lead the way toward a more sustainable planet.

Core Objectives

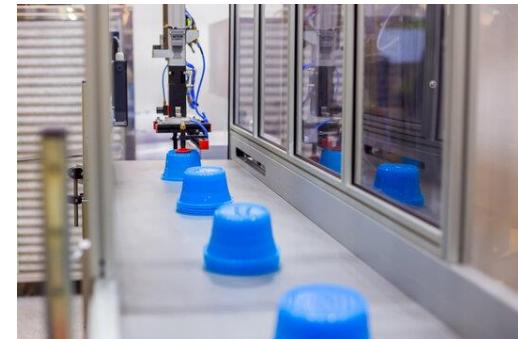
Establish a practical pathway for incorporating curbside post-consumer recycled (PCR) polypropylene (PP) into food contact applications

Technical lead for developing processes and end-use requirements

Identify the most suitable recycled content resins for the highest-volume applications

Define how processors can meet brand owner requirements

Use:


Complex and durable packaging parts (e.g., caps, closures, containers)

High dimensional accuracy, ideal for application of strength and intricate details

Injection Molding

Injection Molding:

- Polypropylene pellets are melted and injected into a closed mold cavity under high pressure
- Material cools and solidifies inside mold, creating a rigid and precisely shaped component

Use:

Sheets can be cut or trimmed to desired width to produce lightweight packaging items (e.g., trays, cups, clamshells)

Ideal for high-volume production and thin-walled packaging

Thermoforming

Thermoforming:

- Polypropylene pellets are melted and homogenized in an extruder using heat and mechanical shear
- Molten polymer is forced through a flat die forming a continuous sheet with controlled thickness
- The sheet cools and solidifies while maintaining dimensions and surface finish

A large industrial facility for recycling post-consumer plastic waste. The image shows massive piles of crushed plastic containers and packaging materials stacked high. In the foreground, a person wearing a high-visibility vest and safety glasses is standing, looking towards the camera. The lighting is bright, highlighting the reflective surfaces of the plastic waste.

Post-Consumer Recycled (PCR) Resin Integration into Food Contact Packaging

Targets for PCR Content

Clearly defined and supported by detailed resin specifications outlining critical properties such as melt flow rate, density, flexural modulus, tensile strength, and impact resistance

Maintaining these properties within acceptable ranges ensures PCR containing resins meet requirements of food contact packaging and adhere to regulatory standards

Compliance with Food Safety Regulations

FDA No Objection Letter (NOL) is considered essential

Conditions of use for food contact applications span a wide range from high temperature sterilization to refrigerated and frozen storage

PCR resins must perform reliably under diverse conditions

Quality protocols are mandated to verify PCR content and performance

Companies requiring migration tests

Colour Flexibility

Colour flexibility is generally accepted, with accommodations around off-white/gray tones given colour stability

Not viewed as an insurmountable barrier to PCR resin adoption

Pricing

Pricing considerations remain a challenge, PCR resin carries a premium over virgin resin

Virgin polypropylene is around \$.40/lb while PCR polypropylene with NOL is over \$1/lb

Organization willingness to absorb cost increase in alignment with sustainability objectives

Technical Components

Supplier requirements emphasize robust quality control, feedstock traceability and compliance with chemical management policies

Audits and certifications are common to ensure food safety and regulatory compliance

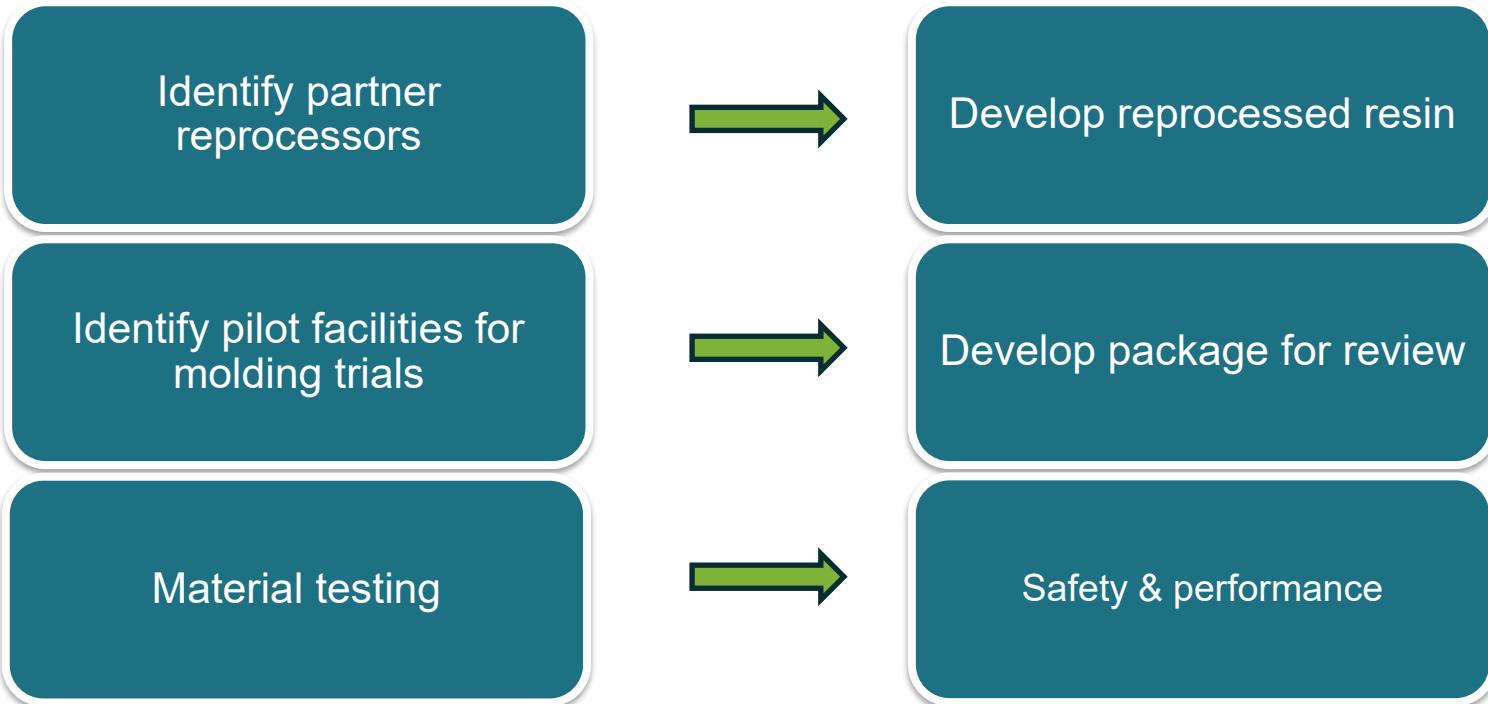
PCR resins widely recognized as strategic towards circularity and reaching sustainability commitments beyond compliance

Physical qualities of PCR resin mirror virgin resin

Product Targets

Two PP packaging formats have been selected for resin testing to validate the use of PCR content:

500-gram injection-molded container



113-gram thermoformed container

Both are intended for food contact applications and must comply with FDA Conditions of Use (A-H), which includes high-temp sterilization as well as refrigerated and frozen storage

Both will incorporate 30% PCR content

Next Steps

Scan to Access
CPT's Publications

info@gapc.ca

www.circularplastics.ca

CPT